Learning Bayesian Network Equivalence Classes with Ant Colony Optimization
نویسندگان
چکیده
Bayesian networks are a useful tool in the representation of uncertain knowledge. This paper proposes a new algorithm called ACO-E, to learn the structure of a Bayesian network. It does this by conducting a search through the space of equivalence classes of Bayesian networks using Ant Colony Optimization (ACO). To this end, two novel extensions of traditional ACO techniques are proposed and implemented. Firstly, multiple types of moves are allowed. Secondly, moves can be given in terms of indices that are not based on construction graph nodes. The results of testing show that ACO-E performs better than a greedy search and other state-of-the-art and metaheuristic algorithms whilst searching in the space of equivalence classes.
منابع مشابه
Using Ant Colony Optimization in Learning Bayesian Network Equivalence Classes
Bayesian networks are a useful tool in the representation of uncertain knowledge. This paper proposes a new algorithm to learn the structure of a Bayesian network. It does this by conducting a search through the space of equivalence classes of Bayesian networks using Ant Colony Optimization (ACO). To this end, two novel extensions of traditional ACO techniques are proposed and implemented. Firs...
متن کاملMethods to Accelerate the Learning of Bayesian Network Structures
Bayesian networks have become a standard technique in the representation of uncertain knowledge. This paper proposes methods that can accelerate the learning of a Bayesian network structure from a data set. These methods are applicable when learning an equivalence class of Bayesian network structures whilst using a score and search strategy. They work by constraining the number of validity test...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA hybrid method for learning Bayesian networks based on ant colony optimization
As a powerful formalism, Bayesian networks play an increasingly important role in the Uncertainty Field. This paper proposes a hybrid method to discover the knowledge represented in Bayesian networks. The hybridmethod combines dependency analysis, ant colony optimization (ACO), and the simulated annealing strategy. Firstly, the new method uses order-0 independence tests with a self-adjusting th...
متن کاملImprovement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm
Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 35 شماره
صفحات -
تاریخ انتشار 2009